Symbols and exact regularity of symmetric pseudo-splines of any arity
نویسنده
چکیده
Pseudo-splines form a family of subdivision schemes that provide a natural blend between interpolating schemes and approximating schemes, including the Dubuc-Deslauriers schemes and B-spline schemes. Using a generating function approach, we derive expressions for the symbols of the symmetric m-ary pseudo-spline subdivision schemes. We show that their masks have positive Fourier transform, making it possible to compute the exact Hölder regularity algebraically as a logarithm of the spectral radius of a matrix. We apply this method to compute the regularity explicitly in some special cases, including the symmetric binary, ternary, and quarternary pseudo-spline schemes. MSC: 65D10, 26A16
منابع مشابه
Pseudo-splines, Wavelets and Framelets
The first type of pseudo-splines were introduced in [12, 24] to construct tight framelets with desired approximation orders via the unitary extension principle of [22]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with desired approximation orders. Pseudo-splines provid...
متن کاملPseudo-splines, Wavelets and Framelets
The first type of pseudo-splines were introduced by [Daubechies, Han, Ron and Shen, 2003] (DHRS) to construct tight framelets with desired approximation orders via the unitary extension principle of [Ron and Shen, 1997]. In the spirit of the first type of pseudo-splines, we introduce here a new type (the second type) of pseudo-splines to construct symmetric or antisymmetric tight framelets with...
متن کاملConstruction of biorthogonal wavelets from pseudo-splines
Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first introduced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight fra...
متن کاملPolynomial reproduction for univariate subdivision schemes of any arity
In this paper we study the ability of convergent subdivision schemes to reproduce polynomials in the sense that for initial data, which is sampled from some polynomial function, the scheme yields the same polynomial in the limit. This property is desirable because the reproduction of polynomials up to some degree d implies that a scheme has approximation order d +1. We first show that any conve...
متن کاملExponential Pseudo-Splines: looking beyond Exponential B-splines
Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reprod...
متن کامل